Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 7(5): e1116, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463239

RESUMO

The aetiology of suicidal behaviour is complex, and knowledge about its neurobiological mechanisms is limited. Neuroimaging methods provide a noninvasive approach to explore the neural correlates of suicide vulnerability in vivo. The ENIGMA-MDD Working Group is an international collaboration evaluating neuroimaging and clinical data from thousands of individuals collected by research groups from around the world. Here we present analyses in a subset sample (n=3097) for whom suicidality data were available. Prevalence of suicidal symptoms among major depressive disorder (MDD) cases ranged between 29 and 69% across cohorts. We compared mean subcortical grey matter volumes, lateral ventricle volumes and total intracranial volume (ICV) in MDD patients with suicidal symptoms (N=451) vs healthy controls (N=1996) or MDD patients with no suicidal symptoms (N=650). MDD patients reporting suicidal plans or attempts showed a smaller ICV (P=4.12 × 10-3) or a 2.87% smaller volume compared with controls (Cohen's d=-0.284). In addition, we observed a nonsignificant trend in which MDD cases with suicidal symptoms had smaller subcortical volumes and larger ventricular volumes compared with controls. Finally, no significant differences (P=0.28-0.97) were found between MDD patients with and those without suicidal symptoms for any of the brain volume measures. This is by far the largest neuroimaging meta-analysis of suicidal behaviour in MDD to date. Our results did not replicate previous reports of association between subcortical brain structure and suicidality and highlight the need for collecting better-powered imaging samples and using improved suicidality assessment instruments.


Assuntos
Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Ideação Suicida , Adulto , Idoso , Encéfalo/anatomia & histologia , Encéfalo/patologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Suicídio/psicologia , Suicídio/estatística & dados numéricos , Adulto Jovem
2.
Mol Psychiatry ; 22(6): 900-909, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27137745

RESUMO

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.


Assuntos
Córtex Cerebral/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Adolescente , Adulto , Encéfalo/patologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Lobo Frontal/patologia , Substância Cinzenta/patologia , Giro do Cíngulo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Neuroimagem/psicologia , Córtex Pré-Frontal/patologia , Lobo Temporal/patologia
4.
Mol Psychiatry ; 21(6): 806-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26122586

RESUMO

The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.


Assuntos
Encéfalo/patologia , Transtorno Depressivo Maior/patologia , Adulto , Estudos de Casos e Controles , Feminino , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos
5.
Genes Brain Behav ; 13(8): 821-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25199620

RESUMO

Understanding the aetiology of patterns of variation within and covariation across brain regions is key to advancing our understanding of the functional, anatomical and developmental networks of the brain. Here we applied multivariate twin modelling and principal component analysis (PCA) to investigate the genetic architecture of the size of seven subcortical regions (caudate nucleus, thalamus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens) in a genetically informative sample of adolescents and young adults (N = 1038; mean age = 21.6 ± 3.2 years; including 148 monozygotic and 202 dizygotic twin pairs) from the Queensland Twin IMaging (QTIM) study. Our multivariate twin modelling identified a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In addition, we also found substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52). This provides further insight into the extent and organization of subcortical genetic architecture, which includes developmental and general growth pathways, as well as the functional specialization and maturation trajectories that influence each subcortical region.


Assuntos
Cérebro/anatomia & histologia , Gêmeos/genética , Adolescente , Adulto , Feminino , Humanos , Masculino , Tamanho do Órgão/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...